Package: miWQS 0.5.0

Paul M. Hargarten

miWQS: Multiple Imputation Using Weighted Quantile Sum Regression

The miWQS package handles the uncertainty due to below the detection limit in a correlated component mixture problem. Researchers want to determine if a set/mixture of continuous and correlated components/chemicals is associated with an outcome and if so, which components are important in that mixture. These components share a common outcome but are interval-censored between zero and low thresholds, or detection limits, that may be different across the components. This package applies the multiple imputation (MI) procedure to the weighted quantile sum regression (WQS) methodology for continuous, binary, or count outcomes (Hargarten & Wheeler (2020) <doi:10.1016/j.envres.2020.109466>). The imputation models are: bootstrapping imputation (Lubin et al (2004) <doi:10.1289/ehp.7199>), univariate Bayesian imputation (Hargarten & Wheeler (2020) <doi:10.1016/j.envres.2020.109466>), and multivariate Bayesian regression imputation.

Authors:Paul M. Hargarten [aut, cre], David C. Wheeler [aut, rev, ths]

miWQS_0.5.0.tar.gz
miWQS_0.5.0.zip(r-4.5)miWQS_0.5.0.zip(r-4.4)miWQS_0.5.0.zip(r-4.3)
miWQS_0.5.0.tgz(r-4.4-any)miWQS_0.5.0.tgz(r-4.3-any)
miWQS_0.5.0.tar.gz(r-4.5-noble)miWQS_0.5.0.tar.gz(r-4.4-noble)
miWQS_0.5.0.tgz(r-4.4-emscripten)miWQS_0.5.0.tgz(r-4.3-emscripten)
miWQS.pdf |miWQS.html
miWQS/json (API)
NEWS

# Install 'miWQS' in R:
install.packages('miWQS', repos = c('https://phargarten2.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/phargarten2/miwqs/issues

Datasets:

On CRAN:

4.76 score 2 stars 1 packages 19 scripts 233 downloads 12 exports 92 dependencies

Last updated 1 years agofrom:501aba6728. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-winNOTENov 03 2024
R-4.5-linuxNOTENov 03 2024
R-4.4-winNOTENov 03 2024
R-4.4-macNOTENov 03 2024
R-4.3-winNOTENov 03 2024
R-4.3-macNOTENov 03 2024

Exports:analyze.individuallycombine.AICdo.many.wqsestimate.wqsestimate.wqs.formulaimpute.bootimpute.Lubinimpute.multivariate.bayesianimpute.subimpute.univariate.bayesian.mimake.quantile.matrixpool.mi

Dependencies:backportsbase64encbslibcachemcheckmatecliclustercodacolorspacecondMVNormcpp11data.tabledigestdplyrevaluatefansifarverfastmapfontawesomeforeignFormulafsgenericsggplot2glm2gluegmmgridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsinvgammaisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatrixMatrixModelsmatrixNormalmcmcMCMCpackmemoisemgcvmimemunsellmvtnormnlmennetpillarpkgconfigpurrrquantregR6rappdirsRColorBrewerrlangrlistrmarkdownrpartRsolnprstudioapisandwichsassscalesSparseMstringistringrsurvivaltibbletidyrtidyselecttinytextmvmixnormtmvtnormtruncnormutf8vctrsviridisviridisLitewithrxfunXMLyamlzoo

README: miWQS

Rendered fromREADME.Rmdusingknitr::rmarkdownon Nov 03 2024.

Last update: 2023-11-06
Started: 2023-11-06