Package: condTruncMVN (via r-universe)

November 2, 2024

Version 0.0.2

Type Package

Title Conditional Truncated Multivariate Normal Distribution

Maintainer Paul M. Hargarten <hargartenp@vcu.edu>

Description Computes the density and probability for the conditional truncated multivariate normal (Horrace (2005) p. 4, <doi:10.1016/j.jmva.2004.10.007>). Also draws random samples from this distribution.

License GPL-3

Depends R(>= 3.5.0)

Imports condMVNorm(>= 2020.1), matrixNormal(>= 0.0.1), tmvmixnorm(>= 1.0.2), tmvtnorm(>= 1.4-10), truncnorm(>= 1.0-8)

Suggests formatR, knitr, rmarkdown, roxygen2, sessioninfo, spelling, testthat

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Language en-US

BugReports https://github.com/phargarten2/condTruncMVN/issues

VignetteBuilder knitr

NeedsCompilation no

Author Paul M. Hargarten [aut, cre]

Date/Publication 2020-09-17 12:50:11 UTC

Repository https://phargarten2.r-universe.dev

RemoteUrl https://github.com/cran/condTruncMVN

RemoteRef HEAD

RemoteSha 1c0ab286f82649edf2d7396d2c117239e0570c6e

Contents

condtMVN										 •					 •					2
demvtrunenorm .										 •					 •					4
pcmvtruncnorm .										 •					 •					5
rcmvtruncnorm .	 •			•		•			• •	 •		•		•	 •		•		•	7
																				9

Index

condtMVN

Conditional Truncated Multivariate Normal Parameters

Description

Suppose that $\mathbf{Z} = (\mathbf{X}, \mathbf{Y})$ is from a fully-joint multivariate normal distribution of dimension *n* with mean and covariance matrix sigma truncated between lower and upper. This function provides the parameters for the conditional mean and covariance matrix of \mathbf{Y} given \mathbf{X} . See the vignette for more information.

Usage

```
condtMVN(
  mean,
  sigma,
  lower,
  upper,
  dependent.ind,
  given.ind,
  X.given,
  init = rep(0, length(mean))
)
```

Arguments

mean	the mean vector for Z of length of n
sigma	the symmetric and positive-definite covariance matrix of dimension n x n of Z.
lower	a vector of lower bounds of length n that truncate Z
upper	a vector of upper bounds of length n that truncate Z
dependent.ind	a vector of integers denoting the indices of dependent variable Y.
given.ind	a vector of integers denoting the indices of conditioning variable X. If specified as integer vector of length zero or left unspecified, the unconditional density is returned.
X.given	a vector of reals denoting the conditioning value of X. This should be of the same length as given.ind
init	initial value used for random generation of truncated multivariate normal in a Gibbs sampler. Default: A vector of zeros, equal to the number of components. For details, see tmvmixnorm::rtmvn().

2

condtMVN

Details

The first four arguments are the parameters of multivariate normal and the truncation space. dependent.ind, given.ind, X.given, init are all arguments that determines the conditional truncated MVN.

Using the full data Z, the conditional mean and conditional variance of Y|X are determined (Wang, 2006). Additionally, to reflect the reduced dimension of Y|X, the truncation limits are also adjusted. See the vignette for more information.

Value

Returns a list of:

- condMean conditional mean of YIX
- condVar conditional variance of YIX
- condLower the lower bound of $\mathbf{Y}|\mathbf{X}$
- condUpper the upper bound of YIX
- condInit the initial values adjusted to match the dimension of YIX. These are used to randomly generate the truncated multivariate normal remytruncnorm.

Note

This function is based on condMVN from the condMVNorm package.

References

Wang, R. 2006. Appendix A: Marginal and conditional distributions of multivariate normal distribution. http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html.

See Also

cmvnorm, pmvnorm, Mvnorm

Examples

```
# Suppose X2,X3,X5|X2,X4 ~ N_3(1, Sigma) and truncated between -10 and 10.
d <- 5
rho <- 0.9
Sigma <- matrix(0, nrow = d, ncol = d)
Sigma <- rho^abs(row(Sigma) - col(Sigma))
# Conditional Truncated Normal Parameters
condtMVN(mean = rep(1, d),
sigma = Sigma,
lower = rep(-10, d),
upper = rep(10, d),
dependent.ind = c(2, 3, 5),
given.ind = c(1, 4), X.given = c(1, -1)
)
```

dcmvtruncnorm

Description

Calculates the density of truncated conditional multivariate normal YIX: f(Y = y | X = X.given). See the vignette for more information.

Usage

```
dcmvtruncnorm(
   y,
   mean,
   sigma,
   lower,
   upper,
   dependent.ind,
   given.ind,
   X.given,
   log = FALSE
)
```

Arguments

У	vector or matrix of quantiles of Y. If a matrix, each row is taken to be a quantile. This is the quantity that the density is calculated from.
mean	the mean vector for Z of length of n
sigma	the symmetric and positive-definite covariance matrix of dimension n x n of Z.
lower	a vector of lower bounds of length n that truncate Z
upper	a vector of upper bounds of length n that truncate Z
dependent.ind	a vector of integers denoting the indices of dependent variable Y.
given.ind	a vector of integers denoting the indices of conditioning variable X. If specified as integer vector of length zero or left unspecified, the unconditional density is returned.
X.given	a vector of reals denoting the conditioning value of X. This should be of the same length as given.ind
log	logical; if TRUE, densities d are given as log(d).

References

Horrace, W.C. 2005. Some results on the multivariate truncated normal distribution. Journal of Multivariate Analysis, 94, 209–221. https://surface.syr.edu/cgi/viewcontent.cgi?article=1149&context=ecn

pcmvtruncnorm

Examples

```
# Example 1: X2,X3,X5|X2,X4 ~ N_3(1, Sigma)
# truncated between -10 and 10.
d <- 5
rho <- 0.9
Sigma <- matrix(0, nrow = d, ncol = d)</pre>
Sigma <- rho^abs(row(Sigma) - col(Sigma))</pre>
# Log-density of 0
dcmvtruncnorm(
  rep(0, 3),
  mean = rep(1, 5),
  sigma = Sigma,
  lower = rep(-10, 5),
  upper = rep(10, d),
  dependent.ind = c(2, 3, 5),
  given.ind = c(1, 4), X.given = c(1, -1),
  log = TRUE
)
```

pcmvtruncnorm CDF for the Conditional Truncated Multivariate Normal

Description

Computes the distribution function for a conditional truncated multivariate normal random variate **Y**|**X**.

Usage

```
pcmvtruncnorm(
  lowerY,
  upperY,
  mean,
  sigma,
  lower,
  upper,
  dependent.ind,
  given.ind,
  X.given,
  ...
)
```

Arguments

lowerY	the vector of lower limits for YIX. Passed to tmvtnorm::ptmvnorm().
upperY	the vector of upper limits for YIX. Must be greater than lowerY. Passed to tmvt-
	norm::ptmvnorm().

mean	the mean vector for Z of length of n
sigma	the symmetric and positive-definite covariance matrix of dimension n x n of Z.
lower	a vector of lower bounds of length n that truncate Z
upper	a vector of upper bounds of length n that truncate Z
dependent.ind	a vector of integers denoting the indices of dependent variable Y.
given.ind	a vector of integers denoting the indices of conditioning variable X. If specified as integer vector of length zero or left unspecified, the unconditional density is returned.
X.given	a vector of reals denoting the conditioning value of X. This should be of the same length as given.ind
	Additional arguments passed to tmvtnorm::ptmvnorm(). The CDF is calculated using the Genz algorithm based on these arguments: maxpts, abseps, and releps.

Details

Calculates the probability that Y|X is between lowerY and upperY. Z = (X, Y) is the fully joint multivariate normal distribution with mean equal mean and covariance matrix sigma, truncated between lower and upper. See the vignette for more information.

Note

For one-dimension conditionals **Y**|**X**, this function uses the ptruncnorm() function in the truncnorm package. Otherwise, this function uses tmvtnorm::ptmvnorm().

Examples

```
# Example 1: Let X2,X3,X5|X2,X4 ~ N_3(1, Sigma)
# truncated between -10 and 10.
d <- 5
rho <- 0.9
Sigma <- matrix(0, nrow = d, ncol = d)</pre>
Sigma <- rho^abs(row(Sigma) - col(Sigma))</pre>
# Find P(-0.5 < X2,X3,X5 < 0 | X2,X4)
pcmvtruncnorm(rep(-0.5, 3), rep(0, 3),
  mean = rep(1, d),
  sigma = Sigma,
  lower = rep(-10, d),
  upper = rep(10, d),
  dependent.ind = c(2, 3, 5),
  given.ind = c(1, 4), X.given = c(1, -1)
)
# Example 2: Let X1| X2 = 1, X3 = -1, X4 = 1, X5 = -1 ~ N(1, Sigma) truncated
# between -10 and 10. Find P(-0.5 < X1 < 0 | X2 = 1, X3 = -1, X4 = 1, X5 = -1).
pcmvtruncnorm(-0.5, 0,
  mean = rep(1, d),
  sigma = Sigma,
  lower = rep(-10, d),
```

rcmvtruncnorm

```
upper = rep(10, d),
dependent.ind = 1,
given.ind = 2:5, X.given = c(1, -1, 1, -1)
)
```

rcmvtruncnorm

Random Sample from Conditional Truncated Multivariate Normal

Description

Randomly samples from conditional truncated multivariate normal distribution variate, YIX, where $\mathbf{Z} = (\mathbf{X}, \mathbf{Y})$ is the fully joint multivariate normal distribution with mean, covariance matrix sigma, and truncated between lower and upper. See the vignette for more information.

Usage

```
rcmvtruncnorm(
    n,
    mean,
    sigma,
    lower,
    upper,
    dependent.ind,
    given.ind,
    X.given,
    init = rep(0, length(mean)),
    burn = 10L,
    thin = 1
)
```

Arguments

n	number of random samples desired (sample size).
mean	the mean vector for Z of length of n
sigma	the symmetric and positive-definite covariance matrix of dimension n x n of Z.
lower	a vector of lower bounds of length n that truncate Z
upper	a vector of upper bounds of length n that truncate Z
dependent.ind	a vector of integers denoting the indices of dependent variable Y.
given.ind	a vector of integers denoting the indices of conditioning variable X. If specified as integer vector of length zero or left unspecified, the unconditional density is returned.
X.given	a vector of reals denoting the conditioning value of X. This should be of the same length as given.ind
init	initial value used for random generation of truncated multivariate normal in a Gibbs sampler. Default: A vector of zeros, equal to the number of components. For details, see tmvmixnorm::rtmvn().

burn	the burn-in, which is the number of initial iterations to be discarded. Default:
	10. Passed to rtmvn().
thin	thinning lag (default as 1).

Note

Uses rtmvn from the tmvmixnorm package to find the random variate.

Examples

```
# Generate 2 random numbers from X2,X3,X5|X2,X4 ~ N_3(1, Sigma)
# truncated between -10 and 10.
d <- 5
rho <- 0.9
Sigma <- matrix(0, nrow = d, ncol = d)</pre>
Sigma <- rho^abs(row(Sigma) - col(Sigma))</pre>
set.seed(2342)
rcmvtruncnorm(2,
  mean = rep(1, d),
  sigma = Sigma,
  lower = rep(-10, d),
  upper = rep(10, d),
  dependent.ind = c(2, 3, 5),
  given.ind = c(1, 4), X.given = c(1, -1)
)
# Example 2: Generate two random numbers from
# X1|X2, X3, X4, X5 ~ N(1, Sigma) truncated between -10 and 10.
set.seed(2342)
rcmvtruncnorm(2,
 mean = rep(1, d),
  sigma = Sigma,
  lower = rep(-10, d),
  upper = rep(10, d),
  dependent.ind = 1,
  given.ind = 2:5, X.given = c(1, -1, 1, -1)
)
```

Index

cmvnorm, 3 condMVN, 3 condtMVN, 2

dcmvtruncnorm, 4

Mvnorm, 3

pcmvtruncnorm, 5 pmvnorm, *3* ptmvnorm, *5*, *6*

rcmvtruncnorm, *3*, 7 rtmvn, *2*, *7*, *8*